1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
|
#include <stdint.h>
#include <stddef.h>
#include <stdio.h>
#include <arch/x86_64/serial.h>
#include "limine.h"
#include "gdt.h"
#include "idt.h"
#include <framebuffer.h>
namespace {
__attribute__((used, section(".requests")))
volatile LIMINE_BASE_REVISION(2);
}
namespace {
__attribute__((used, section(".requests")))
volatile limine_framebuffer_request framebuffer_request = {
.id = LIMINE_FRAMEBUFFER_REQUEST,
.revision = 0,
.response = nullptr
};
}
namespace {
__attribute__((used, section(".requests_start_marker")))
volatile LIMINE_REQUESTS_START_MARKER;
__attribute__((used, section(".requests_end_marker")))
volatile LIMINE_REQUESTS_END_MARKER;
}
namespace {
void hcf() {
asm("cli");
for (;;) {
asm("hlt");
}
}
}
extern void (*__init_array[])();
extern void (*__init_array_end[])();
extern "C" void kernel_main();
extern "C" void _start() {
asm("cli");
if (!LIMINE_BASE_REVISION_SUPPORTED) {
hcf();
}
// setup gdt
SegDesc segs[5];
GDTR gdtr{sizeof(struct SegDesc) * 5 - 1, (uint64_t)&segs};
gdt_entry(&segs[0], 0, 0, 0, 0); // null desc
gdt_entry(&segs[1], 0, 0xFFFFF, 0x9A, 0xA); // kcode
gdt_entry(&segs[2], 0, 0xFFFFF, 0x92, 0xA); // kdata
gdt_entry(&segs[3], 0, 0xFFFFF, 0xFA, 0xA); // ucode
gdt_entry(&segs[4], 0, 0xFFFFF, 0xF2, 0xA); // udata
load_gdt(&gdtr);
reload_segments();
setup_idt();
// initialize global constructors
for (size_t i = 0; &__init_array[i] != __init_array_end; i++) {
__init_array[i]();
}
// Ensure we got a framebuffer.
if (framebuffer_request.response == nullptr
|| framebuffer_request.response->framebuffer_count < 1) {
hcf();
}
// Fetch the first framebuffer.
limine_framebuffer *framebuffer = framebuffer_request.response->framebuffers[0];
// Note: we assume the framebuffer model is RGB with 32-bit pixels.
// for (size_t i = 0; i < 100; i++) {
// volatile uint32_t *fb_ptr = static_cast<volatile uint32_t *>(framebuffer->address);
// fb_ptr[i * (framebuffer->pitch / 4) + i] = 0xffffff;
// }
asm("xchgw %bx, %bx");
fb_init((uint32_t*)framebuffer->address, framebuffer->width, framebuffer->height);
draw_pixel(727, 727, 0x9528fd);
draw_pixel(0, 0, 0xff0000);
draw_pixel(1919, 1079, 0x00ff00);
// for (size_t i = 0; i < framebuffer->mode_count; i++) {
// printf("Mode %d\n", i);
// printf("Pitch %d\nWidth %d\nHeight %d\nbpp %d\nmem_model %d\n",
// framebuffer->modes[i]->pitch, framebuffer->modes[i]->width, framebuffer->modes[i]->height,
// framebuffer->modes[i]->bpp, framebuffer->modes[i]->memory_model);
// }
printf("Actual framebuffer:\n");
printf("Pitch %d\nWidth %d\nHeight %d\nbpp %d\nmem_model %d\n",
framebuffer->pitch, framebuffer->width, framebuffer->height,
framebuffer->bpp, framebuffer->memory_model);
kernel_main();
// We're done, just hang...
hcf();
}
|